
Computerized Cooking (1985)

Computerized Cooking

David A. Mundie

Culinary Softwary Systems

Pittsburgh.

Copyright © 1985 by David A. Mundie. All rights reserved.

Cataloguing in Publication Data

Mundie, David.

	 Computerized Cooking.

	 1\. Recipes, theory of. I. Title.

	 641.01

Table of Contents

	 I. A Prolegomenon to Recipology

	 	 Chapter 1\. A Rationale for Recipes

	 	 	 1\. What is a Recipe?

	 	 	 2\. A Sampling of Recipe Styles

	 	 	 3\. Recipological Axiology

	 	 Chapter 2\. The Goals of Culinary Software

	 	 	 1\. Programming environments for the kitchen

	 	 	 2\. Recipe analysis tools

	 	 	 3\. Syntax; semantic analysis; code generation

	 II. From Theory to Practice

	 	 Chapter 3\. An Introduction to RxOL

	 	 	 1\. Operands and operators.

	 	 	 2\. Variants

	 	 	 3\. Comments and Annotations

	 	 	 4\. Recipes

	 	 	 5\. Sequencing

	 	 	 6\. Formal RxOL Syntax

	 	 Chapter 4\. An Introduction to Cocina

	 	 	 1\. General information

	 	 	 2\. Edit commands.

	 	 	 3\. View commands.

	 	 	 4\. Tool commands.

	 	 	 5\. Getting started.

Introduction

In our times, recipes have become unusable. Alternately enshrined behind plexiglas bookstands in

glossy, expensive, full-color extravaganzas, and consigned to the never-never land of journalistic

evanescence, they have become a form of literature more than a help to the practicing cook. Julia

Child and her co-conspirators, objective allies of Burger King and Wendy's, shroud good cooking in

mysticism and ritual, making it seem out of reach of us mortals, while our day-to-day eating continues

to degenerate in spite of good intentions and a sincere rebirth in gastronomic interests. Fast foods and

fad foods prosper, while the sense of culinary traditions, of cooking as an ongoing art form, wanes

perilously. Overwhelmed by the absurd burden placed on them by the peculiar notion that each

published recipe must be "original," recipe writers make gratuitous, undocumented modifications to

recipes just to avoid lawsuits, and the notion of authenticity goes out the window.

To restore the recipe to its rightful place as a technical document to facilitate the labors of the

practicing cook in this era where there is simply no time to cook, two things are needed. First, a

notation must be adopted which captures the essence of recipes more clearly, more cleanly, and more

succinctly than the prosaic recipes that are the norm today. Secondly, the enormous power offered by

microcomputers must be harnessed to give instantaneous access to the totality of the world's cuisines,

and to aid the cook in the onerous tasks of recipe selection, shopping list generation, and recipe

analysis.

The formal recipe language RxOL, designed at Culinary Software Systems, offers help on both these

fronts. First, it is a revolutionary new approach to simplified cooking. Using it one can easily and quickly

take in a new recipe, identify its structure, and execute it in a customized fashion with a minimum of

anxiety and in the shortest time possible. Second, because RxOL is a formal language, it readily lends

itself to computer analysis, with all the benefits which that entails.

The first part of this work, A Prolegomenon to Recipology, examines the notational and computational

issues from a theoretical perspective. Chapter 1 presents a critique of current recipe styles and offers

an axiological perspective on what recipes ought to achieve. Chapter 2 summarizes the benefits that

one may reasonably expect computerized cooking to offer.

The second half of the book turns to the practical aspects of computerized cooking. Chapter 3

presents the RxOL notation that lies at the heart of the Cocina software offered by Culinary Software

Systems, and shows how it meets the criteria established in Chapter 1. Chapter 4 is an introduction to

the Cocina software itself, and surveys the state of of the implementation of the tools described in

Chapter 2.

Chapter 1. A Rationale for Recipes

In this section we are concerned with the advantages RxOL offers to humans. In order to present the

superiority of RxOL over other types of recipes, we must first address ourselves to the question, "What

is a recipe?" We begin by presenting a set of recipe attributes which can be used to form a taxonomy

of recipe styles. Using this taxonomy, we proceed to examine a sample of different recipe styles from

around the world, to deepen our understanding of the way recipes function as texts. With this

background, we offer a critique of prevailing recipe styles and argue that they are totally unsuited to

the heavy burdens placed upon them by contemporary society.

What is a Recipe?

Before the Industrial Revolution, recipes were relatively unproblematic. Serving primarily as crib sheets

for experienced cooks, they encapsulated the basic ingredients and manipulations needed to put a

dish on the table as succinctly and simply as possible. In fact the ingredients which enter into a dish

and the manipulations which are applied to those ingredients are the sine qua non, the degree zero, of

recipes.

With the societal changes which placed more and more culinary responsibility on individuals—

housewives, husbands—who were not professional cooks, recipes began to absorb into themselves

vast quantities of extraneous information in an attempt to make the recipes seem more accessible. In

our age recipes ramble on about what Spanish fisherman eat at lunch, about how good Aunt Millie's

kitchen smelled when the peach cobbler was baking, about the splendid sights and sounds and fresh

ingredients provided by an Arab souk. So swamped have recipes become, it seems advisable to

catalogue the ingredients of recipes as they appear in the modern world:

Sociology and history. In an attempt to make recipes more interesting, modern authors have

often incorporated into their works general comments about, for example, the history of the

Phillipines, the culinary regions of Italy, cultural influences in Indonesia, the indomitable spirit

of the Armenians. This is great stuff. Anyone seriously interested in food and cooking must

enjoy such reading. The only issue is whether it belongs in recipes; I argue that it does not.

Travelogue. The line between sociology and travelogue can be a fine one. Nevertheless, it

seems useful to distinguish a general commentary on the mores of a country from what one

man ate at that fabulous cafe in Lisbon as the sun sank slowly in the west.

Chitchat. The line between travelogue and chitchat can also be difficult to discern. There is a

history-sociology-travelogue-chitchat continuum, and the cuts one makes in it are always

somewhat arbitrary. I classify as chitchat any information, such as what Señor Gonzales was

wearing when he served that superb Paella, or how many letters irate readers sent poor

James Beard when he published a recipe calling for only 2 3/4 cups of flour in a 1-2-3-4 Cake,

which says nothing about the raison d'être of the recipe at hand.

Culinary technique. Doubtless due in part to the lower average level of expertise on the part

of their audience, modern cookbook authors have all too often succumbed to the temptation

to encumber their recipes with detailed descriptions of how the operations involved are to be

executed. My favorite example is the ritualistic incantation at the start of so many stir-fried

recipes: "The oil should be hot enough to cook with when the first tiny bubbles form and a

few small wisps of smoke appear." A critical examination of almost any popular cookbook will

reveal an endless supply of superfluous, insulting drivel that Shannon would characterize as

having no information content. "Serve." (As opposed to what? throwing it in the garbage?)

"Seed the green pepper." "Wash the tomatoes." "Peel the garlic." "Use a sharp knife."

Culinary equipment. Paradoxically, information on the proper utensils for a recipe is an

intrusion on the recipe itself. The fact of the matter is that noodles cooked in a coffee pot

taste just fine, that steak sautéed in a pressure cooker, and potatoes boiled in a frying pan,

and omelettes made in a wok, and cake baked in a souflé dish, etc., etc., are virtually

indistinguishable from their more usual equivalents. The choice of equipment is largely a

matter of common sense and the material at hand. A cook who, reading "sauté the onion in

butter," needs to be told to do it in a frypan, needs a general education, not a more verbose

recipe.

Biology. Another realm of knowledge which impinges on cooking, and which therefore

cookbook authors have felt compelled to include in recipes, is biology, particularly in the

forms of agriculture, animal husbandry, and piscatology. To be fair, such information is often

relegated to a "dictionary of ingredients" at the back of the book, but its intrusion into

recipes per say is persistent enough to warrant mention here. Descriptions of Mediterranean

fish in a Bouillabaisse recipe, of exotic fruits in a kiwi recipe, of Galangale in an Indonesian

curry recipe, are all too familiar.

Measurements. The experienced cook, with a developed flair for how flavors combine, has

little use for measurements. With the exception of certain baked goods, the combinations

involved in cooking are physical, not chemical; errors in measurement will affect the taste of

the dish, but not its fundamental makeup. As with equipment, the fact of the matter is that

wide variations in quantities are quite acceptable. It does not really matter whether your beef

stew has 200 g of potatoes, or 500, or 1000.

* * *

What is a recipe? It is the thesis of this work that a recipe is none of the above, but rather an expression

in the mathematical sense, that is, a sequence of operands and operators which yield a result which is

the dish whose preparation is being described. The rules for generating such sequences define the

deep structure of recipes, just as grammatical rules define the deep structure of sentences, phonetic

rules define the deep structure of utterances, and the anthropological rules of Lévi-Strauss define the

deep structure of myths. In fact, it is in the last analysis the conflict between the syntactic rules of

natural language and those of cooking which makes natural language an unsuitable vehicle for

describing recipes. In computer science terminology, recipe languages should not be imperative, but

rather functional.

Consider for example the following recipe, written in American Standard Style, with details such as

measurements omitted:

Modern recipe authors, however, in their misguided attempt to substitute precise details for

intuitions, have raised measurements to shibboleth status. It was years before I realized that

"kitchen tested" means that someone has prepared the dish using exactly the measurements

given, as though measuring ingredients to six decimal places would somehow ensure the

cook's success. Nothing saddens me more than the sight of a cook scrupulously measuring

out 1/4 teaspoon of thyme for a dish using one of the "measuring spoon" sets that are

endemic in the Anglo-Saxon kitchen.

Nevertheless, it seems reasonable for a recipe to give some indication of what quantities are

involved. What is unreasonable is for the cook to feel obligated to follow those indications

slavishly. This does not argue, however, for the sloppy, informal style of measurements, which

specify a "glass" of water, a "large" onion, and so forth; paradoxically, such imprecision

clouds the cook's responsibility for the measurement in a way that "200 ml" does not.

Measurements in cooking should be precise, but not necessarily accurate.

Nutritional Information. With the rise of concern over the effects of food on health, it was

inevitable that calorie counts and so on would invade recipes. From the point of view of the

practitioner trying to get the meal on the table, however, they are just one more impediment.

Being calculable from the recipe itself, there is no need for them in a computerized cooking

environment.

Photographs. For completeness, I conclude with the recipial intrusion I find least

objectionable, namely photographs of the completed dish. Although they do tend to distract

the cook by overspecifying the appearance of the dish (I have known people to rush around

in vain attempts to duplicate a table setting seen in Gourmet), they can be delightful to look

at and art objects in their own right.

The deep structure of this recipe, as defined by the sequence of operands and operators which make it

up, is shown by the following tree diagram:

Such tree structures have been extensively studied in computer science, and their properties are well

known. They are made up of three kinds of nodes: terminals, such as "fish", which are the operands or

raw material of the tree; unary operators, such as "grind", which take one operand and yield one new

operand (in our example, ground hazelnuts); and binary operators, such as "sprinkle with," which

combine two operands to yield a new, compound operand (in our example, the sprinkled fish).

As we shall see from our survey of recipe styles in the next section, no traditional recipe notation has

been designed to bring out the essential tree structure of recipes. All of them do violence to the deep

structure, by forcing the recipe into a prose straightjacket or by splitting the tree into pieces. It is the

desire to express precisely and succinctly the deep structure of recipes which led to the development

of RxOL.

A Sampling of Recipe Styles.

Having examined the elements which make up recipes, let us examine some typical recipes to try to

answer the question of what makes a recipe style good or bad.

Before beginning, let us consider how recipe styles might be classified. It seems clear that the inclusion

or omission of each of the elements identified in the preceding section constitutes half of such a

taxonomy. All recipes which include informal measurements, abundant travelogue, and photographs,

share a family resemblance.

The second half of such a taxonomy takes into account the way the chosen elements are arranged. Is

the travelogue information intertwined with the recipe itself, or is it rather set out in a clearly

demarcated preliminary paragraph? Do the photographs accompany the recipes, or are they gathered

into a special section by themselves? As we shall see, the evolution of the "Standard" recipe style is

largely a matter of the separating of ingredients and the unary operations applied to them from the

rest of the recipe.

Sample 1: Aide-Mémoire Style.

This elegantly concise style comes close to being Pure Recipe. It is almost a formal language in its own

right; one feels that building an automatic parser for it would be fairly easy. Nothing that could slow

down the actual preparation of the dish is included; no sociology, no chitchat, no measurements, no

nothing. Even the name of the principle ingredient has been omitted, on the grounds that it can be

inferred from the fact that this recipe is in the chicken section. It is assumed that the cook has

elsewhere learned how to sauté and deglaze.

The result is that dozens of these recipes fit on a page. The eye can quickly scan large bodies of cuisine

looking for just the right recipe for a given occasion. Because the overhead for printing each recipe is

so small, the cookbook writer is encouraged to be more comprehensive in his coverage. When the

recipe is ladened with great masses of unnecessary material, one is lucky to get 200 recipes in an entire

cookbook; the Répertoire has that many in just a few pages.

A corollary to this is that with longer recipes, the corpus becomes scattered over a large number of

cookbooks. To find just the French recipe one is looking for, one might have to go through an entire

shelf of ordinary cookbooks, or one could just look in the Répertoire.

In the preface to their work, the authors of the Répertoire offer one of the very few discussions of

recipe style to be found anywhere. They themselves point out the correlation between brevity and

comprehensive coverage: "All we wanted to do was to present in a restricted format the largest

possible number of ancient and modern recipes." The small size and enormous coverage of their work

allows working cooks always to have it "at hand", and always to find "the desired recipe in the heat of

the moment."

They make the fundamental distinction between recipes as literature and recipes as tools: "our work,

far from having any literary pretensions, frankly adopts a professional vocabulary which grammarians

will perhaps find audacious, but which all cooks, even novices, will understand without effort."

Moreover, they argue, as I have, that considerations of culinary technique have no place in recipes:

"Need we say that it is not in this pocket book that a cook should learn all the secrets, the refinements

of his art, but rather in the great works of our masters?" Finally, they point out the importance of

nomenclature for recipology: "Every day a well-intentioned chef baptizes with a new name a dish long

known by another; every day, also, that a cook presents under an already "registered" name a

preparation different from the one that name evokes; those are serious errors against which every chef

conscious of his mission has the duty to protest with us; for such errors will necessarily lead culinary art

towards decadence, in spite of all the science, in spite of all the efforts of our masters."

Sample 2: Larousse Style.

This sample exemplifies the "literary" approach to recipes. Everything possible is done to make the

recipe look like a normal prose passage. This is a lie, of course, for recipes are not prose. Consider the

division of the recipe above into paragraphs. Nothing in the recipe itself corresponds to the division

we are given; the paragraph breaks might just as well have come at "When" and "Cook", for example.

The prose format is a straightjacket into which the recipe is forced willy-nilly.

The recipe is still relatively concise. A certain number of measurements, some formal, some informal,

are provided. A couple of inane details have crept in ("Set the chicken on a dish, not on the floor") and

some subroutines have been expanded in-line ("fines herbes" has become "parsley, chervil, and

tarragon"), but most of the technical details have been left out.

Sample 3: Narrative Prose

This carries the "literary" style a step further. Instead of frankly giving instructions for preparing the

dish, the author pretends to be describing the cultural habits of the Hungarians. For the sake of literary

style, the natural chronology of the recipe is dismembered ("is cut into cubes and is added to some

sliced onions which have been fried in lard"). The recipe is invaded by culinary taxonomy ("another

variant"), by sociology ("what the Hungarians call"), and by chitchat ("the name is spelled") The

omission of measurements is doubtless motivated by the desire to appear literary.

Sample 4: Emboldened Prose.

With this recipe we see the beginning of the Great Mitosis, the cultural change which resulted in

Customary Style through the ripping off of the ingredients of a recipe, along with the measurements

and operations which apply just to those ingredients taken one by one. Beginning not in a temporal

sense (this is a relatively recent recipe) but in a conceptual one. This recipe is a very close cousin of the

Larousse gastronomique style. Its random division into paragraphs, its occasional meaningless

instructions ("serve"), its omission of anything but ingredients, operations, and measurements, all

suggest the Larousse. It is true that the use of purely formal measurements gives it a less literary tone.

But what really sets this recipe apart is the use of bold-face type for ingredients.

The motivation for this special treatment is presumably to allow the cook to make up a shopping list

quickly. With software tools to generate the shopping list, such a motivation loses its force. There is

however another, subtler motivation: the sense that it is the ingredients which give the recipe a

structure, that it is important for the cook to be able to scan a recipe and take in its ingredient list

quickly, to look ahead to see "what's coming up next."

Mitosis in this form is relatively harmless. It is relatively easy for the eye to ignore the bold-facing and

read the recipe in a normal manner.

Sample 5: Health Food Imperative Style.

Here the Mitosis has progressed one step further. As in the preceding case, ingredients and their

measurements have been boldfaced, but in addition some of them have been separated from the text

and surrounded by white space.

Because this recipe and the next represent impartial mitosis, they are inherently unstable, uneasy

compromises between prose form and complete mitosis. The result is that their style is inconsistent.

For example, the choice of the ingredients to be privileged by surrounding white space is strictly

arbitrary: from a structural point of view there is no reason why the wheat germ and paprika should not

be so handled.

Note that unary operations applied to terminal ingredients are given prefix treatment: "1 chopped bell

pepper" rather than "1 bell pepper, chopped".

Sample 6: Health Food Imperative Style II.

An interesting comparison with the preceding recipe. Here the shopping list is engaged in a life-and-

death struggle with the recipe itself. Culinary operations have been reduced to mere italicized

comments on the ingredient list.

As in the previous example, incomplete mitosis leads to inconsistency. After having established the

possibly useful rule that operators are italicized while operands are not, it throws the distinction away

and breaks down into ordinary prose at the end. Even before that, the rule was applied inconsistently:

note the italicized can of clams. The alternation between chitchat ("no trouble at all!") and recipe

("garlic bread and salad"), and the vacillation between postfix and prefix treatment of unary operations

on terminals ("garlic, minced" vs. "chopped parsley") are additional confusions. All of this makes for

very slow cooking.

Sample 7: Semi-professional Style.

Here we have another early form of mitosis. Instead of bold face, we have italics. Instead of marking

the ingredient list in the recipe itself, it has been duplicated and placed at the head of the recipe.

As in the preceding examples, this form of mitosis is relatively innocuous. Nothing is left out of the

body of the recipe; the ingredient list is totally redundant. Because this is a recipe for professional

cooks, formal measurements have been dispensed with.

Sample 8: American Standard Style.

We come now to the quintessential contemporary recipe. Mitosis has reached completion; the deep

structure of the recipe has been torn asunder, the leaves and twigs of the tree torn off and placed in a

preamble to the rest:

I find nothing sadder than this total disruption of the recipe's integrity. Imagine how far mathematics

would have progressed with a notation which wrote "a+b.(-c)+d" as:

OPERANDS

	 a

	 b

	 c, -

	 d

	 OPERATIONS

	 +, ., -, +

Yet this is exactly what mitotic recipes do. The eye of the harried cook must constantly shift back and

forth between the body of the recipe and the ingredient list. "Brush the fish. What fish??? Oh, the 2

pounds of fish that I have boned and sliced. OK, fish brushed. Now what? Add the salt to the pepper

—no, I did that already."

This ping-pong effect was not a property of the recipes we have examined earlier, despite their mitotic

tendencies. In them, the scission was performed by an invasion of white space (as in sample 5) rather

than by a re-ordering, or else the material split off was strictly redundant, a sort of index to the recipe

(as in sample 7).

It is obviously convenient to have an ingredient list, but it is not worth dismembering the recipe to get

it. One of the nice features of RxOL is that the ingredient list falls out naturally as a by-product;

ingredients line up effortlessly on the left.

Sample 9: The Stepwise Variation.

This is a variation on the Standard Style, included mainly to invite consideration of what constitutes a

"step" in a recipe. The recipe at hand is typical in that its breakdown into steps is strictly arbitrary. One

could just have well have added an extra step starting when the rice is added, or when the rice is

brought to a boil, or at any one of six other places. Conversely, one might just as well have reduced

the number of steps to three, or two, or one. Without an analysis of the recipe's deep structure, step

delimiting is a futile, arbitrary business.

Once the tree structure is taken into account, however, two very natural definitions of a step emerge. A

"small" step is simply an operator: slicing, simmering, adding, all the primitive culinary operations. This

definition is useful in automatically calculating the complexity rating of a recipe. A "large" step is

defined technically as a compound right operand: on the tree structure, it is any nonterminal which is

the right operand of a binary operator. It corresponds to a place where the cook must put aside the

operand he is working with to prepare a whole new subrecipe which is only later merged with the main

line. An example from the Fish with Hazelnut Sauce recipe is the fish itself: after preparing the sauce,

one sets it aside to prepare the fish, then pours the sauce over the fish. It is these compound right

operands which are optionally marked with braces in RxOL, and which determine the breakdown into

steps with FNL.

Sample 10: Diet Style I.

The breakdown into steps here is less arbitrary than usual, but is still inexact, and their representation

as unindented paragraph breaks is unsightly. The recipe is included for the way it exploits the shopping

list to provide some nutritional information. Because RxOL is a formal language, nutritional information

can be automatically generated at will, and need not clutter up the recipe itself.

Sample 11: Szechwan Verbose.

It is hard to imagine a greater contrast to the concise professionalism of the Chasseur recipe from the

Répertoire de la cuisine than this bewilderingly verbose tract. The Chasseur dish was of about the

same complexity as this one, yet its recipe contains about as many lines as this one does pages!

Instead of treating the reader as an experienced professional, this text treats him as a bungling idiot.

The actual preparation of the dish is camouflaged behind a smoke-screen of anecdotes, sociology, and

minute details of culinary technique.

It is noteworthy for its attempt to mitigate the harmful effects of mitosis: instead of placing the

ingredient list at the head of the recipe, it is distributed along the margin, with each ingredient placed

close to where it is referenced in the text. (The extreme length of the recipe make such an expedient

almost a necessity.) Note also the use of pseudo-operands: when an ingredient has already been

referenced once, future appearances in the ingredient list are placed in parentheses. This is very similar

to the colon notation in RxOL.

Sample 12: Oriental Predicate Calculus

This recipe style carries mitosis to its logical conclusion. Not only must you refer back to the shopping

list for the quantity of an ingredient, but also for its name. As in many oriental styles, the unary

operators on the leaves (along with certain binary operators at the top of the tree regarded as "to be

done in advance") are placed in a section by themselves under the rubric "preparation". This is chaos,

but is no worse than the American Standard practice of attaching them to the shopping list. As with the

stepwise variation examined earlier, the seemingly carefully delimited "steps" are devoid of any

rational criterion for their existence.

This recipe and the next one have been included in our survey to illustrate the oriental technique of

using ingredient variables: the compound operands from the preparation phase are given one-

character identifiers, which are then used to reference them during the actual cooking. Presumably this

is an implicit acknowledgement that having two copies of each ingredient name around slows down

the cooking process—a slow-down that is unacceptable during fast-paced stir-frying.

Sample 13: Indochinese Algebraic.

Another example of the oriental practice of using ingredient variables. The method is not applied

consistently here: when the ingredient name is short, it is simply repeated, as happens to b and c.

Sample 14: RxOL Postfix Style I.

 *hazelnuts =grind

 *milk /add

 *cheese /add

 *sherry /add

{ *fish

{ *salt

 *pepper /add

 *lemon juice /mix with} /brush with =let stand

 *butter /rub with} /pour over

{ *salt

 *pepper /and

 *nutmeg /and

 *bread crumbs /and} /sprinkle with

 *butter /dot with =bake

As mentioned previously, RxOL, the formal language devised at Culinary Software Systems, was

designed to reflect as closely as possible the deep structure of recipes. Its grammar is the grammar of

cooking itself. It uses postfix, or "Reverse Polish," notation to describe recipes exactly as logicians use

it to describe inferences or computer scientists use it to describe computations.

Before presenting a complete RxOL recipe, we consider the RxOL expression for the tree which was

drawn earlier. As can be seen, this expression bears an exact, one-to-one relationship to the tree it

represents. In fact, it is generated by traversing the tree and writing down the name of each node after

traversing its operands. This postfix form corresponds perfectly to the natural rhythm of cooking: first

you take one ingredient, then you take another ingredient, then you put them together. First you take

an onion, then you take some oil, then you sauté. First you take some sugar, then you take some

butter, then you cream then together.

The curly braces in the formula require some explanation. Unlike infix notation, postfix notation does

not require parentheses to distinguish different interpretations of a formula. The infix form a+b+c can

mean either a + (b+c) or (a+b) + c; the corresponding postfix formulas, however, are unambiguous

even without parentheses: abc++ and ab+c+. Nevertheless, the human eye has some difficulty

grouping postfix forms when the second operand of a binary operator is compound, so RxOL provides

the option of bracketing such operands. The bracketed form of abc++ would be a{bc+}+.

Sample 15: RxOL Postfix Style II.

<* 1="" 10="" 15="" 30="" 50="" 100="" 125="" 150="" chicken="" chasseur=""

(poulet="" sauté="" chasseur).="" *chicken,="" kg="cut" up="" {="" *oil=""

*butter="" and="" }="" in,="" till="" three-quarters="" cooked=""

*mushrooms,="" g="slice" add="cook" *:chicken="remove" *white="" wine,=""

ml="" *shallot,="" *thickened="" rich="" veal="" gravy,="" *tomato=""

sauce,="" s="" *brandy,="" *parsley,="" *chervil,="" *tarragon,="" pour=""

over="" *parsley="mince" sprinkle="" with="" class="jop-noMdConv">

This sample is a complete RxOL recipe which shows how measurements and annotations are

incorporated, and how the recipe as a whole is structured. This style could be thought of as post-

mitotic, as the re-unification of the recipe under the aegis of the ingredient list. The ingredients are still

lined up in a nice column on the left, but the operations on them are immediately attached, hanging

off to the right. As we shall argue when considering recipological axiology, this permits a rapid

scanning of the recipe and greatly facilitates cooking.

Sample 16: Cocina Natural Language Style.

Chicken with Rice (Pollo con Arroz).

Ingredients:

	 1	 chicken.

	 1 clove	garlic.

 	 0.5 	 onion.

	 4	 peppercorns.

	 	 salt.

	 	 cumin.

	 	 fat.

	 250 g	 rice. Soak, 15 min.

	 2	 tomatoes. Chop.

	 1 L	 water.

	 2	 sweet peppers, green. Slice.

	 1	 chicken liver, from chicken. Grind.

Preparation:

[A]	 Add onion, peppercorn, salt, and cumin to garlic. Grind.

[B]	 Spread chicken with [A]. Brown in fat, lightly. Add rice. Brown,

	 lightly. Add tomatoes. Sauté, 5 min. Add water and sweet

	 peppers. Cover. Simmer, till done. Add chicken liver.

Despite its many advantages, RxOL does impose a certain learning burden on the user. To ease the

transition, Cocina provides an alternative representation called formalized natural language (FNL). The

translation from RxOL to FNL is fully automated; the Cocina user can toggle back and forth between

them instantaneously.

Although it suffers from some of the drawbacks of mitosis, this style benefits from the formal

underpinnings of RxOL itself, ensuring a consistency which makes it relatively easy to cook from. Steps

are always delimited sensibly, and the structure of the recipe is fairly apparent despite the prose-like

form. The mitotic familiarity is an asset, and does allow the new user to start using Cocina at once.

Recipological Axiology

The overriding criterion by which a recipe style must be judged at this point in history is surely the

speed with which a dish can be prepared using a recipe in that style, for the restricted time available

for cooking is the limiting factor in the culinary experimentation of the average home. The desirable

qualities which a speed-oriented recipe style should possess may be summarized as the four C's:

Recipes should be consistent. As in all other technologies, consistency is the key to a good user

interface. When the cook's expectations are constantly being shattered by random changes in

nomenclature, organization, typography, measurement systems, and so forth, the process of cooking is

impeded.

Recipes should be concise. Only if the eye can take in the entire recipe in a few quick glances can

maximum efficiency be obtained. Fast look-ahead permits optimal concurrency in the processing—the

second ingredient can be chopped while the first is being sautéed, and so on.

Recipes should be correct. Nothing is more frustrating than to get three-quarters of the way through a

dish and discover that the author never tells you what to do with the breadcrumbs, or that the

proportions he gave were manifestly erroneous. The authenticity of the recipe, or the correlation

between the name and the dish, is another form of correctness.

Finally, recipes should be comprehensive. This means not only that collections of recipes should be

thorough in their coverage of a given culinary domain, particularly with respect to variants, but also

that the style should be flexible enough to embrace any culinary style and to include any information

the recipe author feels he must provide (no matter how ill-advised its inclusion).

RxOL has been designed with those four qualities in mind. Because RxOL is based on a theory of what

a recipe is, it takes a universal approach to notation. Because it is a formal language susceptible of

automated analysis, many of its features, such as vocabulary and measurements, can be guaranteed

consistent. Inconsistencies such as using "chop finely" instead of "mince" can be eliminated

automatically.

The RxOL form fosters concision because it encourages authors to write down just those operands and

operators which are involved in the dish, neither more nor less. RxOL syntax checkers automatically

guarantee the syntactic correctness of the recipe, that is, that the sequence of operands and operators

given fits together properly. In the future, semantic checkers will be able to check for suspected

semantic inconsistencies, such as pouring ice cream over a steak recipe, as well.

Finally, RxOL provides a notation for variants and comments, to encourage comprehensive coverage

and to permit the inclusion of any type of miscellaneous material without disrupting the structure of the

recipe. Future generations of the Cocina software will further facilitate the division of background

information from recipe by providing CD-Rom technology to allow instant access to immense

encyclopedic information relevant to the recipe. Clicking on "lamb," for instance, will instantaneously

bring up a detailed article on lamb in cooking, complete with a chart of cuts, while clicking on "sauté"

will display a detailed article on sautéing.

Chapter 2. The Goals of Culinary Software

Is cooking fun?

Those who have savored the joy of sitting down to a meal they have prepared, whose adrenaline has

surged at the challenge of mastering a complex menu in time for a deadline, whose soul has relaxed at

the gentle rhythms of kneading bread or chopping onions, will hesitate before answering "No."

And yet the great masses of cookbooks for people who hate to cook, of 10-minute gourmet

cookbooks, of Chinese (or French or Indian or Mexican) cuisine made easy cookbooks, the vast sums of

money spent on dysfunctional appliances and gadgets for the kitchen, the disastrous rise of prepared

and fast foods, all argue that for many people the answer is indeed "No."

I take as a given that eating is fun, that culinary exploration is fun, that thinking about recipes and

inventing new ones is fun. I leave open the question of whether or not the manual labor underlying

such enterprises is fun. Let readers consider carefully whether, given the choice tomorrow evening,

they would spend 30 minutes preparing a Poulet sauté au basilic by hand, or would instead spend 30

seconds punching in their order to their robot. Cooking may well be a recreation, like tennis or

crossword puzzles, where automation would miss the point; on the other hand, it may well fall into the

category of drudge work best left to the droids.

So I do not say that the goal of computerized cooking is to free cooks from cooking, but rather to raise

the level at which cooking is conceived, to make it possible to think about recipes in more abstract

terms than just how a given recipe can be put together.

Programming environments for the kitchen.

Because RxOL is a formal language, the vast array of computer techniques which have been

developed for such formal languages can be applied to it directly. Eventually, advances in natural

language processing may neutralize this advantage, so that the only advantages of RxOL would be

those for human readers, as discussed in the preceding section. For the next few years, however, RxOL

will enjoy a clear advantage.

The culinary tools opened up by RxOL are limited only by the imagination. In this section I have chosen

fifteen representative tools to illustrate what is possible. None of these tools pushes the state of the art

in computing; all of them have well-known analogues in programming languages and data base

management. Most of them fall into the traditional classification of software tools as editors, compilers,

static program analyzers, and dynamic performance monitors. Eight of these tools are currently

implemented in the Cocina system.

Editor. The Cocina editor makes use of the latest techniques developed for manipulating

programming languages and other formal languages. Freeing the author from the necessity

of thinking of his recipe as a text, that is, as an unstructured series of characters, it instead

supports and encourages viewing the recipe as a tree. The editor, in fact, uses the RxOL

grammar to ensure that it is impossible to enter a syntactically incorrect recipe, thus freeing

the author from the tedium of doing his own proofreading.

The most important component of the editor is the parser, whose job it is to convert the input

typed by the recipe author into a tree representation which can be used by the other tools in

the Cocina environment. The editor also incorporates a number of other simple but effective

subtools, such as a scaling tool which automatically adjusts a recipe to produce any given

amount, and a measurement conversion tool which will, when absolutely required, convert

metric units into those other ones.

Pretty printer. Like the parser, the pretty printer is normally considered a component of the

editor, but we single it out here to emphasize that once a recipe is available in RxOL form, it

can be displayed in any of a number of different ways. RxOL Postfix and FNL should really be

thought of as just two pretty-printing options. A third option is to display the RxOL tree

graphically in two dimensions. This offers several advantages, chief among them being the

extreme efficiency with which the human eye can process graphical structures. Its primary

disadvantage is the small amount of data which it allows displaying on a reasonably-sized

screen.

Semantic analyzer. The Cocina semantic analyzer plays an important supporting rôle for

many of the following tools. It is functionally similar to the type-matching component of a

compiler, but is best understand in terms of the analysis of meaning as understood in

computational linguistics, which distinguishes among syntactically incorrect sentences

("buttery an the poked") from syntactically correct, semantically incorrect sentences

("colorless green ideas sleep furiously") from sentences that are both semantically and

syntactically correct ("valiant red heroes sleep quietly"). In computational linguistics, the

analysis of a sentence proceeds by examining the fundamental elements of meaning, or

"sememes," attaching to each word in the sentence, and then searching for sememic

conflicts. Thus in our second example, the sememe inanimate attaching to "ideas" conflicts

with the sememe animate attached to "sleep." In recipes, correct semantics is a matter of

combining ingredients and operations which harmonize with each other. In the hypothetical

recipe " *ice cream *butter /sauté in," the sememe "destroyable by heat" in "ice cream"

conflicts with the sememe "applies to things resistant to heat" in "sauté."

In recipology we may make a simplifying assumption which is unavailable to the natural-

language semiologist, namely, that all meaningful combinations of terms occur someplace in

the data base. The natural-language semiologist cannot infer from the fact that he has no text

which refers to brushing butterflies that the concept contains a semantic conflict. The culinary

semiologist, however, because of the relatively vast quantity of data he has at his disposal

relative to the small number of terms involved, is justified in concluding that if there are no

examples of frying ice-cream in his data base, it is probably a "meaningless" combination.

Thus all queries about the "meaning" of a recipe can be reduced to statistical questions

about the existent data base: "Have sage and cherries ever occurred together in a recipe?

Have potatoes ever been used in a stir-fry?" This approach has its limits, of course; at some

point someone must discover delicious combinations of ingredients that were previously

considered meaningless.

New recipe generator. Once an adequate semantic analyzer is available, it will be possible

to fill in the gaps in the world's cuisine by detecting holes in the semantic fabric of its recipes.

The NRG might observe, for example, that tarragon correlates well with pork, and pork with

mustard, and mustard with tarragon, but that there is no recipe that combines all three, and

so generate a recipe for Côtes de porc sauté à l'estragon au diable. By decreasing the value

of the accepted correlation coefficient threshhold, recipes of any desired level of audacity

could be generated. Unfortunately, given the methodology employed, there is no way of

guiding the NRG in creating radically new dishes. If the correlation coefficient threshhold is

set to zero, any combination of ingredients will be accepted, no matter how awful.

Nutritional analyzer. This and the next two tools fall into the category which computer

science calls "program analysis tools." Given a program text (or recipe), they derive a metric

describing some aspect of the text. The output of all these tools will be available for other

tools, such as the Menu Suggester and the Data Base Manager.

The nutritional analyzer's task is to generate a summary of the nutrients provided by a given

recipe. Of particular interest will be the kJ counter tabulating the food energy value of the

dish, extremely useful for calculating one's food energy intake.

Cost analyzer. Closely related to the nutritional analyzer is the cost analyzer, which will use

the price and amounts of a recipe's ingredients to calculate its cost, including its cost per

gram. Unlike the nutritional information, the cost information is somewhat time- and space-

dependent, so will require occasional updates to remain accurate.

Complexity analyzer. In the past, the evaluation of a recipe's complexity and of the time

required for its execution has been a matter of expressionistic intuition on the part of the

recipe's author. Where one author might assess the time required for Poulet sauté au basilic

as 20 minutes, another might list it as 75 minutes. Where one might rank Boeuf bourgignon

as a finger exercise for beginners, another might treat it as an intimidating enterprise only to

be undertaken by professionals.

Capturing the deep structure of a recipe in an RxOL formula, however, lays the groundwork

for an impartial, scientific analysis of the complexity of that recipe. The time for the recipe as a

whole is simply the sum of the times for each of its component operations. Account must be

taken, however, of the increased complexity of "branching" recipes: given two recipes with

the same number of operands and operators, which in and of themselves are of equal

complexity, that recipe which has the greater number of compound right operands will be the

more challenging: it is always easier to keeping adding things to one container than to run off

and find another container and begin putting together a new compound operand in it.

Shopping list generator. Simple in its conception, and in its execution as well once a RxOL

formula is available, the shopping list generator is nonetheless one of the most radical of the

Cocina tools as far as its influence on the day to day operations of the practicing chef goes.

Our study of The Great Mitosis has already shown the importance commonly attached to the

ease of generating shopping lists: a whole generation of cookbook authors has willingly

mutilated their recipes to facilitate such generation. No one who has pointed the mouse at a

week's worth of recipes and then had Cocina generate a shopping list sorted by grocery store

section would happily go back to copying the list down by hand.

For lack of a better place to mention it, we mention here that the concept of disposable

recipes is another profound liberation for the practicing chef. In the past, one had the choice

of choosing a week's recipes from one or two sources, or of carrying an armload of books

around, or of copying the selected recipes by hand or by means of xerography. Once the

entirety of the world's cuisine is on-line and attached to a printer, however, it becomes a trivial

matter to generate a customized pamphlet of recipes for the week. No more fear of spattered

pages, no more cumbersome plexiglass book stands: toss the recipe on the counter, coat it

with tomato sauce and chocolate, then toss it in the garbage can.

Menu suggester. Like disposable recipes, the Menu Suggester is a sleeper among culinary

software. Surprisingly, it turns out that selecting menus is as onerous or more so as preparing

them. Given a larder and a recipe, most cooks are quite willing to put the meal together; the

hard part is browsing through the cookbooks searching for appropriate recipes.

In one simple implementation, the Menu Suggester is just a random recipe generator: it picks

some recipe at random, and proposes that it be added to the week's list. In future

instantiations, it will be a simple matter to add more intelligence to the Menu Suggester, and

to use the recipe analysis tools to balance the recipes nutritionally, or keep them within a

budget, or keep their complexity metric under a certain threshhold, or see that they provide a

balanced input stream—the leftovers from one recipe providing the "cooked chicken"

needed by the next, and so on.

Data base manager. The idea of a culinary data base was an early inspiration for Culinary

Software Systems. The idea was to free cooks of the necessity of choosing recipes and

generating a shopping list before going to the supermarket by allowing them to purchase

ingredients on impulse and then query the data base to see what could be done with the

assorted ingredients they had brought home. Having purchased a chicken, some fish, some

tomatoes, some red peppers, and some noodles, the data base might suggest "Poulet sauté

à la Bohémienne" and "Soupe de poisson à la Marseillaise."

Given the Menu Suggester and the Shopping List Generator, however, the burden of

planning ahead does not seem as great as it once did. Still, it seems obvious that one should

be able to interrogate the online recipes in almost any conceivable way. It would be

wonderful to say "Give me all the recipes which call for pork and tomatoes with a complexity

metric of less than 7 and a food energy density of less than 6 kJ/g."

Interactive encyclopedic browser. In section 1 I argued that despite its interest, the great

body of sociological, biological, and instructional materials which currently bog down recipes

belongs elsewhere. This is that elsewhere. I shall not call it a "help facility," since I think that is

an inherently pejorative term—a help facility is what you provide after you have botched your

user interface. The tool in question here is more of a learning tool, a means of exploring the

vast domains of culinary science. Integrated into the editor, this tool will permit the user, for

example, to point to the word "sauté" in a recipe, and summon up a complete interactive

tutorial on sautéing, taking advantage of the advances in computer interfaces and mass

storage devices (CD-Roms) of the past few years.

We are witnessing a radical re-thinking of what a text is. As has been pointed out before,

users will not give up the familiarity of the printed text without substantial rewards; in the

culinary realm the rewards are there. One can envision a future in which, for example, an

The original impulse for devising a formal recipe language was to provide a methodical framework for

dealing with this problem. The idea was to find metarecipes, i.e. recipes containing variables, when the

variable was bound to some particular term. The current RxOL approach uses ternary trees to list

alternatives alongside each node.

Indonesion curry recipe appears in the middle of the screen, in all its RxOL purity. Along the

right margin are a series of buttons, labeled "History. Sociology. Travelogue. Chitchat.

Utensils. Technique. Photographs." Clicking on any of the buttons brings up further

information on that aspect of the recipe. In this way, the recipe serves as the skeleton on

which are hung all the other culinary viewpoints.

But of course nothing prevents the user of such as system from turning it inside out—of

placing, for example, the travelogue in the middle of the screen, and turning the recipes into

one of the buttons on the side. Such is the protean nature of text in the hypertext era.

Robot instruction generator. In the not too distant future it will doubtless be practical to

build culinary machines capable of executing many of the necessary primitive operations

needed for cooking—sautéing, measuring spices, adding liquids, controling temperatures,

and so on. Given a RxOL recipe tree, generating the machine instructions to execute that

recipe will be fairly straightforward. If we consider our analogy between RxOL and

programming languages, we see that this tool corresponds exactly to the "code generation"

phase of a traditional compiler. The major conceptual obstacle to implementing the RIG is the

sequencing problem discussed in Chapter 3.

The transformations which this combination of RxOL and some special-purpose hardware

might effect on our concept of cooking are profound indeed. We can indeed envisage the

day when one might simply type in the name of a recipe and have the robot cook it.

Interactive execution monitor. Even in the absence of culinary robots, however, code

generation can be useful. If the target machine language is English or another natural

language, the recipe can be "executed" by a human being: the computer can, in real time,

issue step by step commands such as "take a break for 10 minutes" or "chop an onion,"

effectively relieving the cook of the need to look at the recipe at all. The value of such a

capability is greatly increased when several dishes are being prepared simultaneously—the

computer can automatically merge the recipes involved and compute exactly what should be

done when. Like all culinary code generators, the IEM depends on solving the sequencing

problem.

Metarecipe generator or recipe unifier. The problem of the taxonomy of dishes is a largely

unaddressed one. Most cookbooks dealing with a genus of dishes single out some one

species and treat the other members of the genus as "variants". This is of course totally

capricious; there is no more reason to treat Pork with zucchini as a variant of Beef with

zucchini than there is to treat Beef with zucchini as a variant on Pork with zucchini .

Whatever the method used to represent variants, the function of the metarecipe generator is to factor

out common subexpressions, that is, to identify duplicated subtrees and to merge the recipes

containing them into a single metarecipe. This is isomorphic to the problem of classifying recipes

according to the shape of their trees. (Note that the MG eliminates the operators add and and from

the tree before performing such an analysis.) With such a tool, one would at last be able to make a

scientific attempt at recipological taxonomy, to answer the question of how many kinds of recipes there

are. This would be of tremendous benefit in learning recipes, since once a recipe type has been

mastered, all recipes of the same shape come for free.

Chapter 3. An Introduction to RxOL

1. Operands and Operators

Ingredients are marked with bullets, as:

 *onion, 500 g

 *butter

Unary operations, i.e. those which are performed on a single (possibly compound) ingredient, are

marked with equal signs, and are placed immediately after the ingredient to which they refer, as:

 *onion =peel

Binary operations, i.e. those which combine two (possibly compound) ingredients to form a new,

compound ingredient, are marked with slashes, and are placed immediately after the two ingredients

which they unite, as:

 *onion =peel

 *butter /saute in

Ingredients may be marked as "pseudo-operands" by inserting a colon after the bullet; in this case

they are ignored by the CSS shopping-list generator and other software. Operands may be marked as

simultaneous by following their slash or equals-sign by a plus-sign; in this case they are to be

performed at the same time as the preceding operator. Examples:

 *chicken

 *butter /saute in

 *:chicken /remove (You don't want the software to think

 you need another chicken!)

 *cream /add =bring to boil =+beat (i.e. beat the cream

 as you bring it to a boil)

2. Variants; Recipological Taxonomy

The topic of variants is one of the thorniest in recipe theory, involving as it does the problem of the

taxonomy of recipes. In RxOL, variants are surrounded by brackets and separated by vertical bars, as:

 [*onions |

 *scallions |

 *shallots]

 *butter /saute in

This would be expressed in natural language as "saute onions or scallions or shallots in butter".

Variants may be numbered using the symbol "#" and a list of numbers separated by commas. This is

done in order to link variants with each other or with variant phrases in the recipe's name. When a

single unary operator is enclosed in brackets, the meaning is that the operator is optional.

To see the relationship between variants and classification, consider the following two recipes:

 *pork *butter /sauté in *parsley /sprinkle with

 *steak *butter /sauté in *parsley /sprinkle with

In American Standard style, one of these two, on a purely arbitrary basis, would be chosen as the

"main" recipe, and the other reduced to the status of a "variant":

Sauté the pork in butter. Sprinkle with parsley.

Variants:

Substitute steak for the pork.

In the formal language which preceded RxOL, and which was inspired by the predicate calculus, the

variable term was given a name, and the list of values for the variable was provided separately:

 *a *butter /sauté in *parsley /sprinkle with

a =

	 *pork

	 *steak

Since the variable name is never referenced except in the definition of its values, this "closed" form

was ultimately rejected in favor of an "open" form where the alternative values are listed in place:

[*pork | *steak] *butter /sauté in *parsley /sprinkle with

If ingredients were the only RxOL items that could have variants, it would perhaps be clearer to write

this as:

 *pork *steak /or *butter /sauté in *parsley /sprinkle with

However, unary and binary operators can have variants too:

 *pork [=julienne | =dice] *butter /sauté in

The introduction of "logical" binary operands such as "/or" does nothing to solve this problem.

Appealing to the principle of economy of means, logical binary operators were rejected in favor of a

general alternate mechanism which allows any compound operand or operator to be specified as an

alternative.

Consider now the following four recipes:

 *pork *butter /sauté in *parsley /sprinkle with

 *beef *butter /sauté in *parsley /sprinkle with

 *pork *butter /sauté in *mint /sprinkle with

 *beef *butter /sauté in *mint /sprinkle with

One way of combining these into a single metarecipe would be to specify them as unrelated

alternatives:

[*pork *butter /sauté in *parsley /sprinkle with |

 *beef *butter /sauté in *parsley /sprinkle with |

 *pork *butter /sauté in *mint /sprinkle with |

 *beef *butter /sauté in *mint /sprinkle with]

One really wants to express the family relationships among the four, however, by factoring out their

commonality:

[*pork | *beef] *butter /sauté in

[*parsley | *mint] /sprinkle with

This is not only shorter and clearer, it is also a better expression of the general tree pattern which all

four recipes share. Suppose, however, that instead of four recipes there were only two—pork with

parsley and beef with mint. This requires the use of variants linked together by means of variant

numbers:

[*pork #1 | *beef #2] *butter /sauté in

[*parsley #1 | *mint #2] /sprinkle with

A special kind of linked variants arises in the case of nominal variants, that is, variants which affect the

name of the recipe. This case is treated by using the same notation in the title:

< *[PORK WITH PARSLEY #1 | BEEF WITH MINT #2].

[*pork #1 | *beef #2] *butter /sauté in

[*parsley #1 | *mint #2] /sprinkle with>

It should be noted that using nominal variants, the Metarecipe Generator can easily merge any two

arbitrary recipes; the entirety of the world's cuisine could be represented as a single large recipe. The

undesirability of doing so raises a number of issues in recipological taxonomy; we shall return to the

subject in the section on suprarecipial organization.

3. Comments and annotations

Comments. We have claimed above that RxOL allows the controlled incorporation into the recipe of

the auxiliary information which we argue can overwhelm traditional recipes. This is done through the

following five forms of comments:

Modifiers. Adjectives and adverbs, applying to operands and operators, respectively, are simply

placed after their argument using a comma separator:

*tomatoes, canned =chop, coarsely

It is through these that culinary techniques and information on culinary utensiles can be introduced.

With ingredients the question often arises of whether to place an adjective after the noun as a

comment or before it as an integral part of the ingredient specification. Should it be "green beans" or

"beans, green"? "Olive oil" or "oil, olive"? The general rule is that if there is another form of the noun

which could conceivably be substituted, then the adjective should be placed afterwards, as a

comment.

Measurements. The units of measurement allowed are:

	 ml mm g C kPa h min s

All Cocina software is committed to the metric system; as a concession to the American market,

however, customary units can be automatically displayed as comments after the metric units.

Annotations. While modifiers and measurements are understood by the Cocina software tools, the

remaining forms of comments are not; they provide information for humans only, and are simply

ignored by the software.

Annotations are phrases attached to operands or operators, typically providing more details on

culinary technique than a single modifier can provide:

=simmer, 30 min; should be nearly dry

Parentheses. When the information to be incorporated is not naturally attached to any particular node,

the general-purpose mechanism of parentheses is the notation of choice.

(This sauce goes especially well with fatty fish.)

(An excellent hot-weather dish.)

Italics. For those who simply must have their chitchat, RxOL does allow one final form of comment.

This is the preferred method of introducing material that is avowedly immaterial to the preparation of

the dish.

My uncle Fred used to cook this when we went fishing together.

The Spanish influence on the Phillipines shows through in this dish.

 *tomatoes, large, ripe, 500 g (must be fresh)

4. Recipes

A recipe consists of:

 (i) 	 A start symbol, "<" (ii)="" a="" symbol="" to="" indicate=""

whether="" it="" is="" compound="" ingredient="" (="" *),="" unary=""

operation="" or="" binary="").="" obviously,="" most="" recipes="" are=""

ingredients.="" (iii)="" the="" name="" of="" recipe,="" optionally=""

including="" notes="" separated="" by="" semicolons.="" followed=""

period.="" (iv)="" reverse="" polish="" formula="" for="" recipe.="" (v)=""

any="" local="" subrecipes.="" (vi)="" recipe="" end="" symbol,="" '=""

class="jop-noMdConv">'.

5. Sequencing

One of the hardest points for the novice to understand is that a recipe's structure does not correspond

to its chronology. On the surface, it would seem that what one wants is a step by step sequence of

instructions for executing a recipe. It is the purpose of this section to explain why that is neither

possible nor desirable.

In computer science terminology, the tree structure of a recipe imposes a partial ordering on its

operations, but not a total ordering. All that is required by the recipe is that at the moment a binary

operation is executed, both its operands must be ready; it says nothing about which of them was

prepared first. Thus, given the tree:

 *lettuce =chop

 *parsley =mince /sprinkle with

it makes absolutely no difference whether the lettuce is chopped before the parsley is minced, or vice

versa. Thus any recipe which specifies such an ordering, whether it be "Chop the lettuce, then mince

the parsley. Sprinkle the lettuce with the parsley" or "Mince the parsley, then chop the lettuce. Sprinkle

the lettuce with the parsley" is living a lie. This lie is so pervasive in "standard" recipes that it takes a

long while for a cook, even an experienced one, to free himself from the notion that the order in which

the operations are presented is not necessarily the order in which they should be executed.

This illusion would be relatively benign except for one thing. In order to minimize the preparation time

of a recipe, the longest path from the leaves of the tree to its root must be started first. In computer

terminology, this is the "critical path" of the recipe. Consider for example the following recipe:

 *beef

 *oil /sauté in

 *peppers =mince /add =sauté

 *mushrooms, dried =soak, 30 min /add

 *spinach =chop /add

If the cook sautés the beef and peppers in oil, and then pauses for 30 minutes to soak the mushrooms,

he will be in deep trouble. Not only will his stir-fry be soggy and greasy, but he will also have extended

his total cooking time by the time needed to sauté the beef in oil.

In the case of a human cook, optimal performance can be ensured only by jealously preserving the

freedom to prepare the operands of a binary operation in either order. This is because minimizing

overall cooking time requires the greatest possible amount of parallel processing, which in turn

requires, given the variability of the time it takes to perform any given operation and the large number

of interruptions a recipe normally undergoes, that the cook be constantly scanning the recipe asking

the question "what could I be doing now?" RxOL is designed to facilitate that bottom-up scanning

process.

In the case of culinary robots, a much higher degree of parallelism will be possible, because there can

truly be multiple processors. A robot cook is not restrained by the human inability to chop an onion,

grate cheese, and sauté chicken all at the same time. On the other hand, the detection of parallelism in

such a situation will have to be automated. The main obstacle to such automation is ingredient

substitution: the precise sequence of instructions issued by the sequencer will be quite different

depending on whether one is using dried garbanzos or canned ones, frozen peas or fresh ones, and so

on.

Given such a sequencer, it would of course be easy to modify its output so as to be usable by humans,

resulting in the interactive execution monitor discussed above. The overall performance of such a

system is likely to be inferior to that of an experienced cook interpreting RxOL directly, but it might be

easier to use, especially if several recipes are being prepared at once.

6. RxOL SYNTAX

NOTES ON NOTATION:

| denotes alternation

() are used for grouping

< > denote "zero or more occurrences"

[] denote "zero or one occurrence"

{ } denote "one or more occurrences"

file ::= {< ["§"|"¶"] string "."> {recipe}}

recipe ::= "<" block="" ">"

block ::=

 " *" heading compound-operand |

 "=" heading compound-unary-operator |

 "/" heading compound-binary-operator

heading ::= phrase < ";" string > "."

variantlist ::= "#" integer < "," integer >

compound-operand ::=

 simple-operand |

 compound-operand simple-unary-operator |

 compound-operand compound-operand simple-binary-operator |

 variant-operand

compound-binary-operator ::=

 [compound-unary-operator] simple-binary-operator

 [compound-unary-operator] |

 variant-binary-operator

compound-unary-operator ::=

 simple-unary-operator |

 compound-unary-operator compound-unary-operator |

 compound-operand simple-binary-operator |

 variant-unary-operator

variant-operand ::=

 "[" compound-operand [variantlist]

 { "|" compound-operand [variantlist] } "]"

variant-binary-operator ::=

 "[" compound-binary-operator [variantlist]

 { "|" compound-binary-operator [variantlist] } "]"

variant-unary-operator ::=

 "[" compound-unary-operator [variantlist]

 < compound-unary-operator [variantlist] > "]"

varop ::="|" | "?"

simple-operand ::= " *" [":" | "!"] sentence

simple-unary-operator ::= "=" ["+"] sentence

simple-binary-operator ::= "/" ["+"] sentence

sentence ::= phrase < annotation >

annotation ::= ("," | ";") string

phrase ::= idchar

string ::= title_char idchar ::= letter | "-" | """ | "'" | " "

title_char ::= idchar | digit | "[" | "]" | "#"

RULES:

1\. If any variant formula governed by a variant operator has a label, then

(a) all the variant formulas governed by that variant operator must be

labeled, and (b) the set of labels within the scope of that variant operator

must be equal to the set of labels in the heading.

2\. Comments are delimited by "(" and ")".

3\. Compound left-hand operands to binary operators may be bracketed using "

{" and "}'

4\. Blanks and comments are allowed everywhere except in numbers.

Chapter 4. An Introduction to Cocina.

1. General Information

Cocina is a set of culinary software tools which provide a variety of recipe selection and analysis

functions designed to meet some of the goals set forth in Chapter 1.

Invoking Cocina. The icon for Cocina itself is a Macintosh with a baker's hat; double-clicking on that

icon starts up Cocina with an untitled document. The icon for Cocina recipe files shows a plate and a

wine glass; double-clicking on such an icon starts up Cocina and opens the selected document. Cocina

libraries, which group together multiple recipe files, have icons depicting a pile of cookbooks, and may

also be opened by double-clicking.

Cocina uses two auxiliary files, the Macintalk system file and a file called 'Ingredient Data'.

Editing windows. Cocina allows the user to open as many windows as available memory will allow.

Each window is a text editing window supporting all the normal Macintosh editing features, including

printing from the print menu. Many Cocina commands create new windows for the purpose of

displaying output.

Cocina recipe files may optionally contain subtitle resources which provide titles for subsections of the

file. These subtitle resources are created automatically when files are saved; any text between a section

symbol ('§') and a period or end of line is treated as a subsection title, although only the first 15

characters are retained. When working with such files, the current subsection title will be displayed in

the lower left corner of the window.

Files larger than 32K bytes may be opened for reading only. Editing commands which modify the

content of the file are not available for such files; another editor such as QUED or Edit must be used to

create or modify such large files.

Most of the Cocina commands described below operate on the current selection range, if it is not

empty, or the entire file, if the selection range is empty. This applies to the print command as well, so

that individual recipes can be printed without copying to another file. However, if the file is larger than

32K, a selection range must be chosen.

When a library has been opened, either by double-clicking on a library icon or by using the "open"

command, a menu containing the files in the library will be available. Any file in the library may be

opened simply by choosing its name from the menu.

2. File Commands

Add to Library. This command is used to add recipe files to the current library. The standard file dialog

will appear repeatedly; selecting a recipe file will add it to the library. Only the name of the file is

retained; if it is not in the current working directory, a utility such as "Set Paths" will have to be used to

ensure that the file is accessible when it is selected from the library menu. Files may be deleted from

the library by selecting them from the library menu while holding down the option key.

No provision is made for creating new libraries from within Cocina. Existing libraries may be copied

and then modified, or new libraries may be created using a tool such as Menu Creator, Rmaker, or

Resedit: a library is simply a file containing a MENU resource with an ID of 8.

3. Edit Commands.

Read Phonetic. The selected text is interpreted as text transcribed in the International Phonetic

Alphabet, and is passed to Macintalk for speaking. An IPA font is provided for the purpose of entering

such text. This option allows total control over the Macintalk output.

Translate to Phonetics. The selected text is translated to the International Phonetic Alphabet for

processing by the Read Phonetic command. The algorithm used is rather crude; for the Beta release it

is just the Macintalk Reader module. Future releases will have a translator specialized for culinary terms.

Sort. The selected text is sorted by lines. The primary purpose of this command is to allow sorting of

shopping lists (see below). The algorithm used is sub-optimal, so performance on very large selections

will suffer.

Select Random. This command chooses a recipe at random from the current file. The title of the recipe

is highlighted. This command is very useful in putting together recipe lists, as the user is relieved of the

burden of having to make selections. Holding down the option key when processing large files will

restrict the choice to the current buffer. This speeds up response as well as limiting the scope of the

search.

When a library has been opened and the current file belongs to it, the recipe will be chosen at random

from among all the files in the library; the option key may by used to restrict the selection to the

current file.

Dual Units and Go Metric. Because of its manifold advantages to the practicing cook who wants to

get a meal on the table in the shortest possible time, and because Cocina is a long-range project, the

metric system has been used throughout. Nevertheless, I realize that a substantial proportion of the

Beta testers will be among the 2% of the world's population that is not familiar with the metric system.

Consequently Cocina includes two commands carefully designed to make the system usable by the

hold-outs while maintaining the dominance of the metric system. The Go Metric command converts

customary units to metric ones, while the Dual Units command inserts customary units as comments

after the metric ones. The goal of the conversion routines was readability rather than precision, so a

pound is treated as 500 g, and so on. The results should be treated with care when dealing with baking

recipes. The units which these two commands know about are:

Metric: g, m, J, Pa, l, °C

Customary: oz., lb., inch, kC, psi, t., T., cup, °F

The only two prefixes recognized are 'k' and 'm'.

Find. The bare-bones find command is case-insensitive. If a library is open, this command will

automatically close the current recipe file and open the next one as needed. A replace command will

be provided for the next release.

4. View Commands

The view commands operate on the selected text and transform it in one way or another to look at in

from a different perspective. There are two groups of view commands: the first group presents the

recipe itself in a variety of ways, while the second performs analyses and displays them, rather than the

recipe itself.

If the selection range embraces more than one recipe, the selected command will be performed on

each of them in turn. Typing - terminates this process.

Pretty Print. The pretty print command displays the recipe as a uniformly formated RxOL formula. It is

useful to guarantee uniform formatting after a recipe has been entered. It inserts braces around

compound right operands to improve readibility.

Natural Language. This command converts the selected recipes to natural language and displays

them in the FNL window.

Tree. The Tree command displays the selected recipe as a tree diagram. This is useful in visualizing a

recipe, in planning how to approach it. To avoid the problem of scrolling graphics, the Beta release

version simply displays the tree on a full-screen window and waits for the user to click the mouse.

Nutrition. The Nutrition command displays a nutritional analysis of the recipe. Currently this analysis is

limited to the recipe's food energy content, but will be expanded to other aspects in the near future.

Shopping List. The Shopping List command generates a list of the ingredients of the selected recipes,

preceded by a category such as 'dairy' or 'produce'. By sorting the Shopping List window, a list

conveniently arranged by category is produced.

Complexity. The Complexity command analyzes how complicated a recipe is. It does so by preparing

a weighted sum of the number of ingredients and operations the recipe involves, with a penalty for

recipes that are highly branching. In addition, this command computes the 'skeleton' of the recipe, that

is, its essential structure disregarding straight-line series of 'add' and 'and' operations. Future releases

will include an estimate of the time required to prepare the recipe.

5. Tool Commands

The Tool menu provides three analysis tools that are useful in planning an overall nutritional and

exercise program. Each tool brings up a dialog window which accepts input from the user and

calculates certain output values.

Exercise. The exercise calculator provides precise information about a given exercise regime. The

three independent variables involved are body weight, altitude, and type of exercise (cycling,

swimming, or running). Changing any of these values causes recomputation of all values based on the

current distance and time.

The four dependent variables involved are distance, time, energy, aerobic points, and oxygen

consumption. Changing any two of these causes recomputation of the remaining values based on the

two new values.

For the sake of convenience, two additional variables are provided: speed and activity coefficient.

These are just distance/time and energy/(weight.time), respectively.

To enter a value, edit the corresponding field and then click the "calculate" button.

Dieting. This window provides information on dieting strategies. Given an individual's sex, frame size,

height, weight, age, food energy intake, and activity coefficient, along with a desired final weight, the

tool computes the individual's ideal weight, the time it would take to reach the final weight given the

indicated nutritional regime, and the food intake required to maintain both the current and the ideal

weight.

Activities. This dialog allows the user to compute his activity coefficient by specifying the number of

hours per day he spends on a variety of activities. A number of activities ranging from "lying still" to

"running 15 km/h" are presented, along with the number of hours per day unaccounted for and the

total activity coefficient. By filling in the boxes until the total reaches 24 (and the "unaccounted for"

figure drops to 0), a customized estimate of an individual's activity coefficient may be derived. This

figure can then be used in the Dieting Tool to estimate the time required for a weight change.

Three activity boxes are labeled "other", and have an editable field in which the user can fill in

coefficients obtained from the Exercise Tool to allow for customized exercise regimes.

7. Getting Started with Cocina

The tools Cocina provides may be used in any number of combinations, but to get started we have

found that the following scenario is quite useful.

1. Open an empty window called 'This Week's Menus' to store the recipes you will be preparing this

week.

2. Open 'The World's Cuisine,' the master file of international recipes. It is from this file that you will

select recipes.

3. Select a random recipe using the 'Select Random' or -J (for jump) command. If the recipe sounds

good, copy it into This Week's Menus. If not, select another random recipe.

4. Continue in this fashion until a week's recipes have been chosen. Save your new file.

5. If desired, convert the recipes you have chosen into English by choosing the FNL command. In

either case, print it out using the print command to use while cooking during the week.

6. With an empty selection range in This Week's Menus, choose Shopping List. This will generate an

unsorted ingredient list in the Shopping List window.

7. Making sure the Shopping List is active, choose Sort from the Edit menu to arrange the shopping list

by categories, then print it out to shop with.

